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Introduction

I After a conclusive evidence of nonzero value of reactor mixing
angle θ13 we now have information of all three neutrino
mixing angles.

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


with sij = sin θij and cij = cos θij

P=Diag(e−iα1/2, e−iα2/2, 1)

I The strength of leptonic CP violation from δ is measured by
Jarlskog rephasing invariant J = c12s12c23s23c2

13s13 sin δ 1.

I Measurement of effective Majorana mass in the current and
upcoming experiments like GERDA, EXO, CUORE,
MAJORANA, SuperNEMO will provide constraint on α1, α2

and neutrino mass scale.
1C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard

Electroweak Model and a Measure of Maximal CP Violation, Phys. Rev. Lett.
55, 1039 (1985)



Introduction

I The cosmological constraint on the sum of neutrino masses is
given by Planck Collaboration 2 Σmνi <0.23 eV at 95% CL.

I The South Pole Telescope Collaboration states the preferred
value for Σmνi = 0.32± 0.11 eV 3. The 3σ range is (0.01
−0.63) eV at 99.7% C.L. KATRIN experiment on tritium β
decay in preparation aims to probe value down to 0.2 eV .

I There are some more challenges left such as to determine the
absolute mass scale, mass hierarchy of neutrinos and the CP
violation in leptonic sector amongst others

I A nonzero value of θ13 has further lead to the study of the
effects of perturbations to the symmetries leading to its
nonzero value

2
P. A. R. Ade et al. [Planck Collaboration], Planck 2013 results. XVI. Cosmological parameters,

[arXiv:astro-ph.CO/1303.5076].
3

Z. Hou, C. L. Reichardt, K. T. Story, B. Follin, R. Keisler et al., Constraints on Cosmology from the Cosmic

Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey, arXiv:1212.6267 [astro-ph.CO].



Introduction

I S3 is smallest discrete non abelian group, is the permutation
group of three objects. Perturbations in S3 symmetric
leptonic mass matrices is used to study mass spectra of
leptons and predict well known democratic and TBM mixing.

Mν = pI + qD,

where

I=Diag(1,1,1),

D =

 1 1 1
1 1 1
1 1 1


p and q are complex parameters.

I We check the possibility of obtaining neutrino masses and
mixing angles starting from S3 symmetry in Mν at high scale
through quantum corrections.



Introduction

I In the charged lepton basis where Mnu is S3 symmetric,

Yl =
1

v

 me 0 0
0 mµ 0
0 0 mτ


I (Yν) is of the form Yν = yνUνD 4 D is Diag(r1, r2, 1). All

parameters yν , r1 and r2 are real, positive dimensionless
parameters which characterize eigenvalues of Yν . Uν is
R23(θ2).R13(θ3e−iδ).R12(θ1) having phase δ. θ1, θ2, θ3

and δ are varied from (0-2π).

MR = −YT
νM−1

ν Yν .

I M1, M2 and M3 are obtained by diagonalizing MR and are
not free parameters.

4J. -w. Mei and Z. -z. Xing, Radiative generation of theta(13) with the
seesaw threshold effect, Phys. Rev. D 70, 053002 (2004) [hep-ph/0404081].



S3 symmetric Mν

I Mν can be diagonalized by the unitary transformation R as
RTMνR

I R can be of the form of UTBM. But due to degeneracy of
mass eigenvalues it is not unique.

I The most general diagonalizing matrix is UTBMR13(φ) and
implies the same physics as UTBM by setting φ=0 without
loss of generality.

I The mass eigenvalues of Mν are p, p + 3q, p corresponding
to m1, m2 and m3.

I Complex numbers p and p + 3q are considered to have
different directions but same magnitude 5.

I q can be choosen completely imaginary and p is |p|e−iα
2

5R. Jora, S. Nasri and J. Schechter, An Approach to permutation symmetry
for the electroweak theory, Int. J. Mod. Phys. A 21, 5875 (2006)
[hep-ph/0605069]



S3 symmetric Mν

I The phase α adjusted to ensure equal magnitude of p and
p + 3q.

I The magnitude of p and q can be written in terms of real free
parameter x as

|p| = x sec
α

2
,

|q| =
2

3
x tan

α

2
.

I x is a real free parameter. |p| and |p + 3q| can be made
equal by adjusted the phase α

I

|m1| = |m2| = |m3| = x sec
α

2
.



RGE running (ΛGUT to ΛEW) with seesaw threshold effects

Mν(µ) = −
v2

2
YT
ν (µ)M−1

R (µ)Yν(µ)

I The evolution of leptonic mixing parameters (ΛGUT to ΛEW)
in a generic seesaw model needs to take care of the series of
effective theories that arise by subsequently integrating out of
the heavy right handed fields at mass thresholds.

I Yν , MR are dependent on Λ.

Ẏe =
Ye

16π2
[αe + C1He + C2Hν ] ,

Ẏν =
Yν

16π2
[αν + C3He + C4Hν ] ,

ṀR =
1

16π2

[
(YνY†ν )MR + MR(YνY†ν )

]
C5,

Hi = Y
†
i Yi (i = e, ν). C1 = 3

2
, C2 = − 3

2
, C3 = − 3

2
, C4 = 3

2
, C5 = 1 for SM

C1 = 3, C2 = 1, C3 = 1, C4 = 3, C5 = 2 for MSSM.



RGE running (ΛGUT to ΛEW) with seesaw threshold effects

αe(SM) = Tr(3Hu + 3Hd + He + Hν ) − (
9

4
g2

1 +
9

4
g2

2),

αν(SM) = Tr(3Hu + 3Hd + He + Hν ) − (
9

20
g2

1 +
9

4
g2

2),

αe(MSSM) = Tr(3Hd + He) − (
9

5
g2

1 + 3g2
2),

αν(MSSM) = Tr(3Hu + Hν ) − (
3

5
g2

1 + 3g2
2),

I At scale of M3

UT
RMRUR = Diag(M1,M2,M3).

I Yν is accordingly transformed as YνU∗R.

I At M3 scale effective operator is κ(3) given by the matching
condition

κ(3) = 2YT
νM−1

3 Yν ,



RGE running (ΛGUT to ΛEW) with seesaw threshold effects

I Between scale M3 and M2

Mν = −
v2

4
{κ(3) + 2YT

ν(3)M
−1
R(3)Yν(3)}.

I RGE in between scale is governed by κ(3), Yν(3) and M3

κ̇(3)(SM) =
1

16π2

[
(C3HT

e + C6HT
ν(3))κ(3) + κ(3)(C3He + C6Hν(3)) + α(3)(SM)κ(3)

]
,

κ̇(3)(MSSM) =
1

16π2

[
(HT

e + HT
ν(3))κ(3) + κ3(He + Hν(3)) + α(3)(MSSM)κ(3)

]
,

α(3)(SM) = 2 Tr(3Hd + 3Hu + He + Hν(3)) − 3g2
2 + λ,

α(3)(MSSM) = 2 Tr(3Hu + Hν(3)) −
6

5
g2

1 − 6g2
2.

I κ2 at M2 is

κ(2) = κ(3) + 2YT
ν(3)M

−1
R(3)Yν(3).



RGE running (ΛGUT to ΛEW) with seesaw threshold effects

I Similarly after integrating out M2, low energy effective
operator from M1 to EW scale is

κ̇(1) = (C3HT
e )κ(1) + κ(1)(C3He) + ακ(1),

α = 2 Tr(3Hu + 3Hd + He) + λ− 3g2
2 in SM,

α = 2 Tr(3Hu)−
6

5
g2

1 − 6g2
2 in MSSM.

I Mν is diagonalized by UPMNS to get mixing angles, CP
violating phases and mass squared differences at EW scale.

In the charged lepton basis

MΛEW
ν = IK.I

T.MΛGUT
ν .I.



Neutrino masses and mixings

I = Diag(e−∆e, e−∆µ, e−∆τ ),

w Diag(1−∆e, 1−∆µ, 1−∆τ ) +O(∆2
e,µ,τ ),

∆j =
1

16π2

∫
[3(Hj)− (Hνj)]dt,

, where j = e, µ, τ .

t = ln(Q/Q0), with Q(Q0) being the running (fixed) scale.

I ∆SM
τ can be of the order of 10−3 when Yτ ∼ .01 and

Yν = 0.2 and the scale Q and Q0 are 1012 and 102.
∆MSSM
τ ≈10−3(1 + tan2β)

I In absence of seesaw threshold effects (no Yν) ∆τ ∼ 10−5

for SM for Yτ ∼ .01



Parameters SM SM MSSM
Input without perturbation with perturbation

r1 3.43×10−3 9.72×10−3 2.53 × 10−4

r2 0.312 0.217 0.301
δ 321◦ 303◦ 93.4◦

yν 0.78 0.49 0.426
θ1 47◦ 282◦ 33.5◦

θ2 345◦ 32.6◦ 215◦

θ3 232◦ 218◦ 198◦

x(eV) 8.61×10−2 4.34 × 10−3 1.1 × 10−3

α 264◦ 176.6◦ 186◦

λ(eV) − 4.61×10−4 −
Outputs

m1(eV) 0.1 0.126 1.62 × 10−2

θ12 32.1◦ 33.7◦ 34.1◦

θ13 9.18◦ 7.32◦ 7.23◦

θ23 44.2◦ 48.6◦ 45.3◦

∆m2
12(eV2) 4.74 ×10−4 7.43 ×10−5 7.12 × 10−5

∆m2
23(eV2) 2.71 ×10−3 2.57 ×10−3 2.33 × 10−3

MR1
(GeV) 7.78 ×104 4.66×105 1.59 × 103

MR2
(GeV) 4.33 ×108 6.70×107 5.74 × 108

MR3
(GeV) 3.15 ×109 6.22×108 3.45 × 109

δ 52.1◦ 90◦ 297.3◦

JCP 2.76×10−2 2.87×10−2 −2.56 × 10−2

mee(eV) 9.49×10−2 9.86×10−2 4.89 × 10−3

Table: Numerical values of parameters radiatively generated via RGE and seesaw threshold effects for both SM

(with and without λ) and MSSM. The input parameters are taken at ΛGUT = 2×1016 and tanβ=55 for MSSM.



Radiative corrections in SM
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Figure: The RG evolution of the mixing angles, mass squared differences
and masses between MGUT and MZ for the standard model (SM).



Radiative corrections in SM

I There is significant running of the mixing angles due to the
degenerate nature of the masses at high scale.

I The running between and above the seesaw scale is strongly
influenced by the neutrino Yukawa couplings Yν

I When the parameters run in between the seesaw scales one
heavy singlet is integrated out and thus (n-1)×3 submatrix of
Yν remains.

I Therefore, the running behavior in between these scales can be
different from running behavior below or above these scales.

I Below the seesaw scale the RG effects for the mixing angles in
the SM are negligible.

Below the seesaw scale the running of the mass eigenvalues is
significant even in SM for degenerate as well as hierarchical
neutrinos due to the factor α which is much larger than Y2

τ

I Simultaneously ∆m2
12 of the order of ≈ 10−4eV2 is generated



Radiative corrections in SM with λ
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Figure: The RG evolution of the mixing angles, mass squared differences
and masses between MGUT and MZ for the standard model (SM+λ).



Radiative corrections in SM with λ

M′ν = Mν + λ[S23]

S23 =

 1 0 0
0 0 1
0 1 0


m1 = x + λ− ix tan

(
α

2

)
,

m2 = x + λ + ix tan

(
α

2

)
,

m3 = x − λ− ix tan

(
α

2

)

I The parameters yν , r1 and r2 are arbitrary parameters and are
expected to be ≤ O(1).

I The parameter λ is found to be very small� O(1) eV.



Radiative corrections in MSSM
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Figure: The RG evolution of the mixing angles, mass squared differences
and masses between MGUT and MZ for the standard model (SM).



Radiative corrections in MSSM

I for MSSM with large tanβ in the presence of seesaw threshold
effects these corrections can enhance because now Yν can
also contribute to them and this correction can be large.

I The running of masses in the MSSM is much larger than the
SM due to the presence of tanβ which in our case is taken to
be large.

I The dominant effect, however, is the running in the range
M3 ≤ µ ≤ ΛGUT where the flavor dependent terms (Yl and
Yν) can be large.

I The interesting dependence of αν(MSSM) and tanβ on the
running contributions of flavor dependent terms is given in 6.
For large tanβ the contribution of Ye and Yν become
important.

6S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, Running
neutrino mass parameters in see-saw scenarios, JHEP 0503, 024 (2005)
[hep-ph/0501272].



Conclusions

I We study the RG running of the S3 invariant neutrino mass
matrix at the GUT scale in presence of seesaw threshold
corrections for both SM and MSSM.

I In the absence of seesaw threshold corrections there is
negligible running in the SM and MSSM with low tanβ.

I Above the threshold scale there is contribution of Yν in
addition to Yl and running depend on more parameters than
below the seesaw scale

I In SM we the mixing angles can be produced at the EW scale.
The significant running occurs between and above the seesaw
threshold scale.

I Below the seesaw scale there is no significant running as the
only contribution comes from Yτ which is small.

I ∆m2
12 and ∆m2

23 are not simultaneously produced in the
current limit at the EW scale. The solar mass squared
difference is found to be large (O(10−4)) in comparison to
its allowed value at the EW scale.



Conclusions

I The modified Mν is obtained by adding one of the S3

permutation group matrices such that the resulting matrix is
diagonalized by the same unitary matrix of S3 invariant
matrix.

I For MSSM large corrections to masses and mixing angles
occur at scale above the seesaw threshold where the Yukawa
coupling Yν is present and has large free parameters which
can enhance running for large tanβ.

I All the mixing angles and the mass squared differences are
produced in the current limit at the low scale.

I Thus S3 symmetric neutrino mass matrix at the GUT scale
can produce all the masses and mixing angles in the present
neutrino oscillation data range for both MSSM with the high
tanβ and the SM with the modification obtained by adding to
it one of the S3 permutation matrices.
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